
SELF-SUFFICIENCY: MOTIVATION, EXECUTION, RESULTS

Neaman Institute 28 May 2025

Dr. Alik Pelman

HAPPY TO BE HERE

Philosopher

Research Fellow, Technion Assis. Prof., Shenkar

Homesteader

Pelman's Homestead

Author

Way – An Enquiry Into The Art of Living

HUMANITIES IN STEM

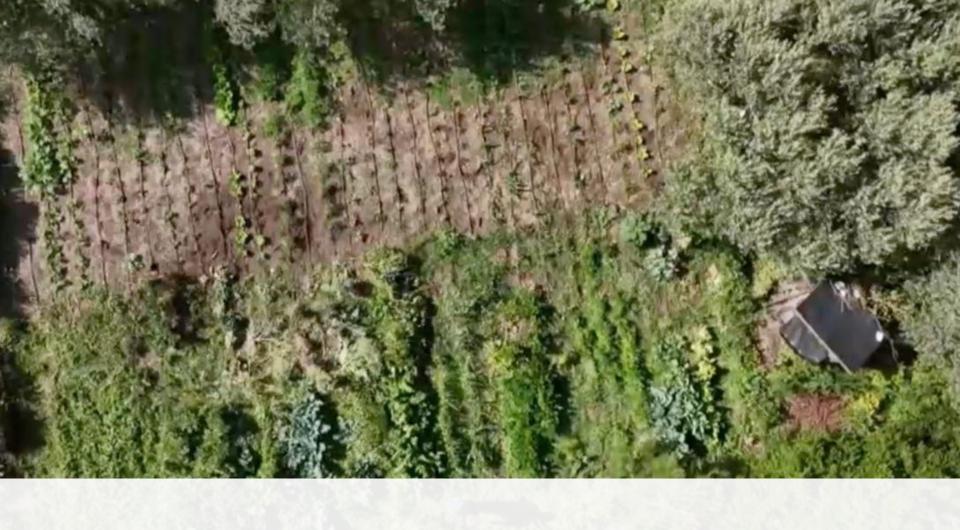
- Research: ongoing collaborations
- Teaching: Philosophy of science and technology; Ethics of science and technology
- Embedded Ethics modules
- New study programs: e.g., the newly approved Engineering Leadership Program (headed by Prof. Arnon Bentur)

STRUCTURE OF TALK

1. Motivation:

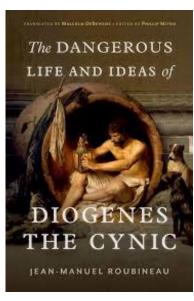
Self-Sufficiency as Ethics

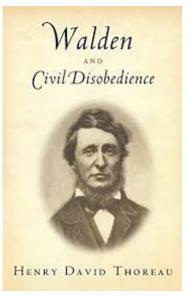
2. Execution:

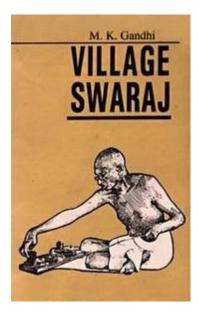

Dwelling; Food

3. Results:

Nutrition; Environment


4. Conclusion

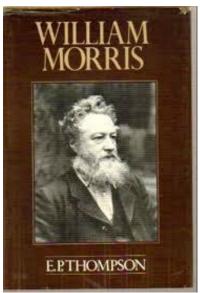


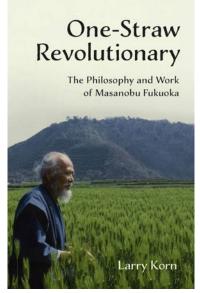


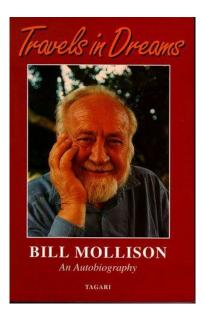
I. MOTIVATION

A 2500-YEAR TRADITION

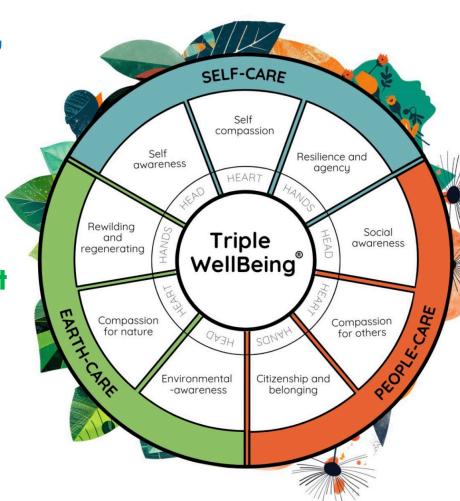
Ivan Illich


Tools for Conviviality

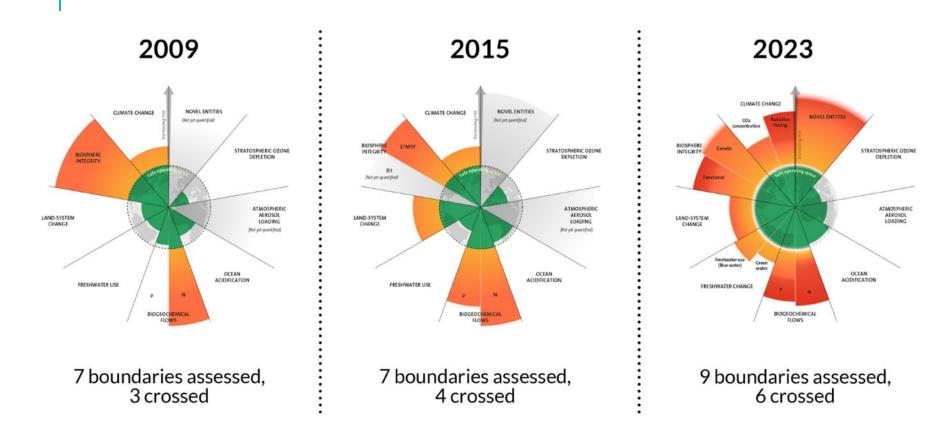



1973

A 2500-YEAR TRADITION

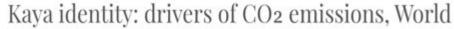

THE THREE PILLARS OF ETHICS

Ethics: 'What ought I to do?'

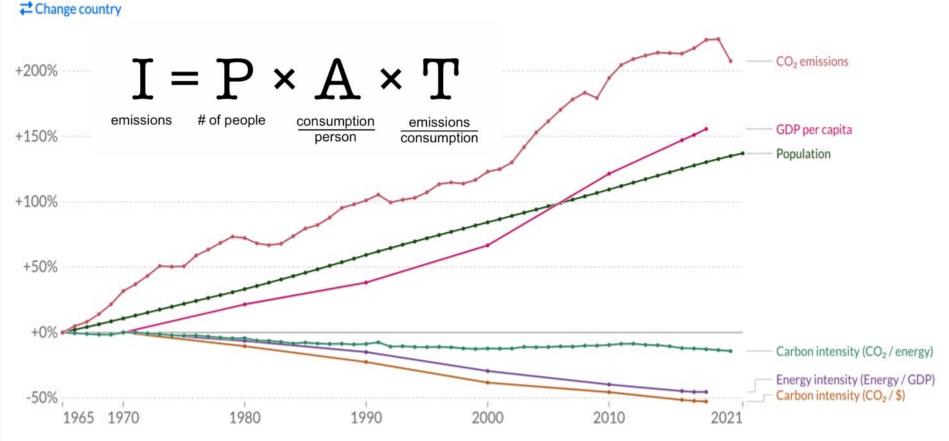

1. Concerning other people

2. Concerning the environment

3. Concerning myself

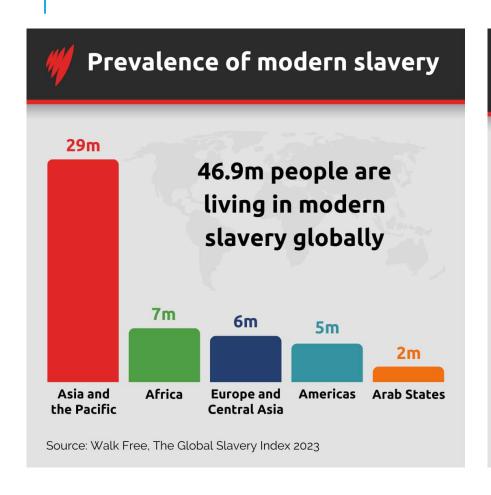


1. ENVIRONMENTAL DEGRADATION


Azote for Stockholm Resilience Centre, Stockholm University. Based on Richardson et al. 2023, Steffen et al. 2015, and Rockström et al. 2009)

1. ENVIRONMENTAL DEGRADATION

Percentage change in the four parameters of the Kaya Identity, which determine total CO₂ emissions.

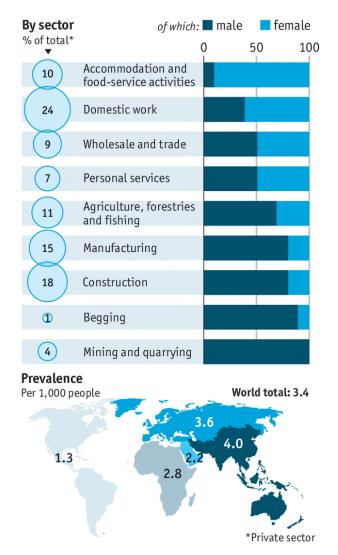


Source: Our World in Data based on Global Carbon Project; UN; BP; World Bank; Maddison Project Database

Our World In Data based on Global Carbon Project; UN; BP; World Bank; Maddison Project Database

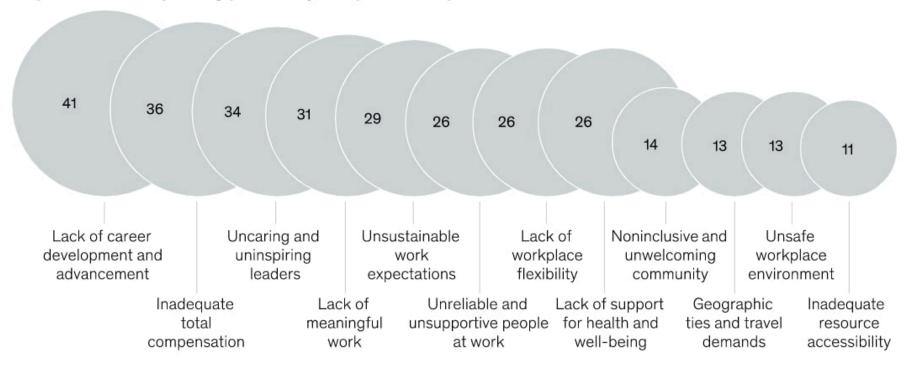
Note: GDP per capita is measured in 2011 international-\$ (PPP). This adjusts for inflation and cross-country price differences.

2. SOCIAL EXPLOITATION — MODERN SLAVERY


2. SOCIAL EXPLOITATION — MODERN SLAVERY

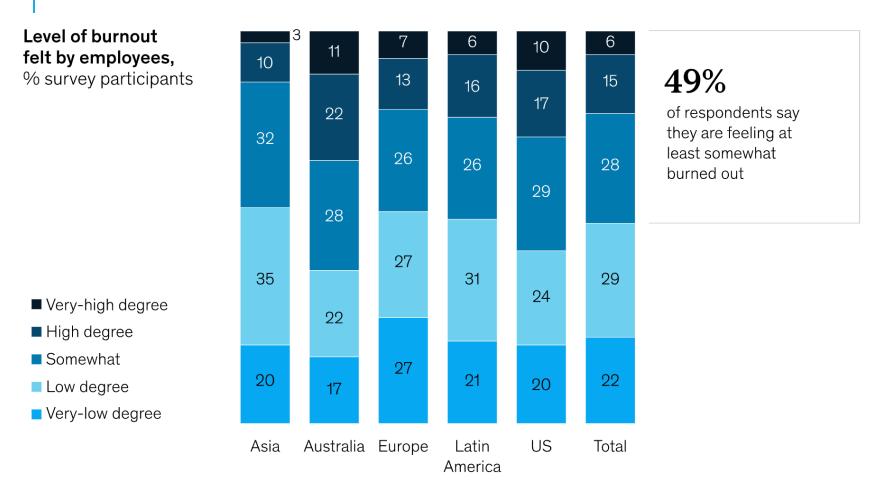
Not free to choose

Worldwide exploitation of forced labour, 2016



Sources: International Labour Organisation; International Organisation for Migration; Walk Free Foundation

3. PERSONAL LACK OF AUTONOMY


Top reasons for quitting previous job, Apr 2021–Apr 2022, %

Source: Subset of respondents from McKinsey's 2022 Great Attrition, Great Attraction 2.0 global survey (n = 13,382), including those currently employed and planning to leave (n = 4,939), those currently employed and planning to stay (n = 7,439), and those who quit their previous primary jobs between Apr 2021 and Apr 2022 (n = 1,154)

3. PERSONAL LACK OF AUTONOMY

Note: Burnout is likely underrepresented by our sample of full-time employees, as employees experiencing burnout are less likely to respond to survey requests, and those who feel most burned out may have already left the workforce.

Source: Reimagine Work: Employee Survey (Dec 2020–Jan 2021, n = 5,043 full-time employees who work in corporate or government settings)

3. PERSONAL: VIRTUE ETHICS THROUGH SELF-SUFFICIENCY

- Enhanced freedom
- Multidimensionality
- Understanding material cycles "from within"
- Proximity to nature
- Simplicity
- Aesthetics

איזה נער התקדם יותר בסופו של
חודש – זה שעשה את אולרו שלו
מן הבצר שהוא עצמו חפר והתיך,
מתוך קריאה בעניין זה בכל הדרוש
לשם כך, או זה ששמע באותו זמן
הרצאות באינסטיטוט על עבודות
מתכת וקיבל במתנה אולר רוג׳רס
מאביו? מי משניהם עלול יותר
לחתוך את אצבעותיו?

1854 ,<u>וולדן</u>, 1854

OVERALL ETHICAL STRUCTURE

OVERALL ETHICAL STRUCTURE

		Means: Self-sufficiency	
		Minimizing Wants	Maximizing Provisioning
	Self-regarding (virtue ethics)		
Ends: Ethics	Social- responsibility		
	Environmental- responsibility		

OVERALL ETHICAL STRUCTURE

		Means: Self-sufficiency	
		Minimizing Wants	Maximizing Provisioning
Ends: Ethics	Self-regarding (virtue ethics)	Antiquity; Modernity	Modernity
	Social- responsibility	Medieval; Modernity	Medieval; Modernity; Contemporary
	Environmental- responsibility	Modernity; Contemporary	Modernity; Contemporary

II. EXECUTION

SELF-SUFFICIENCY "LAB" |

- •Self-sufficiency in:
- 1. Dwelling; 2. Food
- •Reasons:

Recreation and culture

Alcoholic beverages, tobacco and narcotics Other

Food and non-

alcoholic beverages

- 1. Biggest impact; 2. Feasible; 3. Basic.
- Source of confidence:
- People have been doing it for many millennia

II. EXECUTION 1: DWELLING

METHOD

- 0 gr concrete
- No foundations no disturbance to soil
- Natural materials (wood, soil, stone, wool)
- Mostly local materials
- Solar power
- Cooling: passive
- Heating: 'Rocket Stove Mass Heater'
- No sewage (composting toilet)
- Grey water recycling
- Self-built (with friends..)

GROUND WORKS + FRAMING MINIMAL - ONLY COMPACTING SOIL ON 40 M² OF HOUSE

LENTILS, SIDES

LIVING ROOF (SHEEP WOOL; OLD CARPETS)

LIVING ROOF SOIL FROM AROUND THE HOUSE (TERRACES TO PREVENT SLIDING)

THE CLIMATE CHALLENGE

INDOOR WALLS 'THERMAL MASS': PEBBLES FROM AROUND THE HOUSE

EXTERNAL WALLS INSULATION: SHEEP WOOL

FLOOR STONE ON MUD, THEN OILED WITH COOKING OIL

SHOWER TRADITIONAL LIME PLASTER

1. $CaCO_3 \rightarrow$

 $CaO + CO_2$.

2. CaO + $H_2O \rightarrow$

 $Ca(OH)_2$.

3. $Ca(OH)_2 + CO_2$

 \longrightarrow

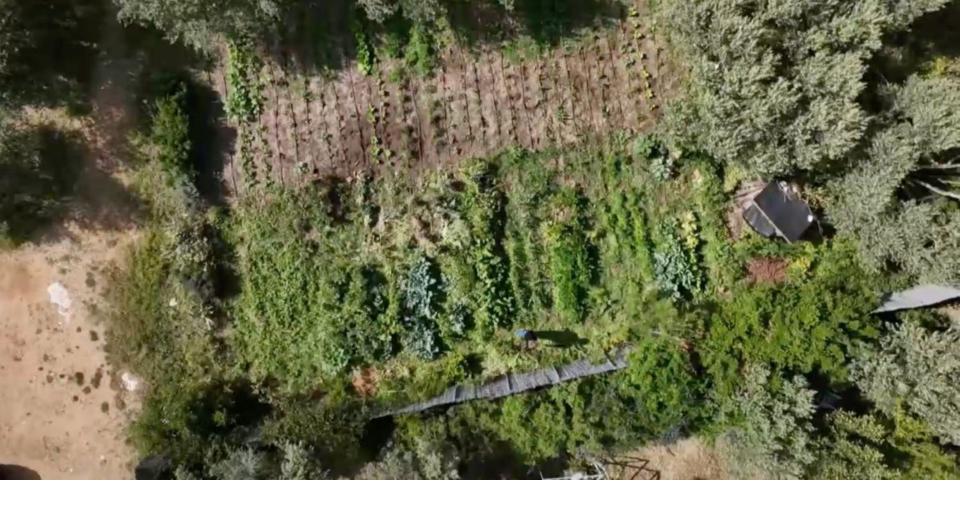
 $CaCO_3 + H_2O.$

COMPOSTING TOILET NO BLUE WATER. NO SEWAGE

HEATING ROCKET STOVE MASS HEATER

SOLAR POWER

FURNITURE



II. EXECUTION 2: FOOD

Farm's design goals:

1. Nutrition-oriented:

To meet Recommended Dietary Allowances (RDA) – balanced diet

2. Environment-oriented:

Cause minimum negative environmental impacts.

Very different from profit-oriented industrial farming.

Minimum impacts

- No chemicals
- •No plough ('no-dig')
- Seasonal
- Local varieties
- Crop-rotation
- Small-scale tools
- Maximum rainfed

Maximum nutrition

- Crops mix with high
- nutritional yield
- Spatial overlap

(intercropping)

	Wheat	Pulses	Olive oil	Vegetables	Total	Calories
Grams/day						
Carbs (grams)					274 gr	1000
Fat (grams)					76 gr	600
Protein (grams)					106 gr	400
Calories						2000
Kg/year						
Plot size (m²)						

	Wheat	Pulses	Olive oil	Vegetables	Total	Calories
Grams/day	125	225	65	1000	1415 gr	
Carbs (grams)	90	131	0	52.5	274 gr	1000
Fat (grams)	3	4.5	65	3.5	76 gr	600
Protein (grams)	16.5	59	0	30	106 gr	400
Calories	426	768	526	280		2000
Kg/year						
Plot size (m²)						

	Wheat	Pulses	Olive oil	Vegetables	Total	Calories
Grams/day	125	225	65	1000	1415 gr	
Carbs (grams)	90	131	0	52.5	274 gr	1000
Fat (grams)	3	4.5	65	3.5	76 gr	600
Protein (grams)	16.5	59	0	30	106 gr	400
Calories	426	768	526	280		2000
Kg/year	46	84	25	365		
Plot size (m²)	200	350	50	150	750	

PLAN OF AGROECOLOGICAL FARM — VEG GARDEN

2020

	bed 1	bed 2	bed 3		bed 4	bed 5	bed 6		bed 7	bed 8	bed 9
Winter	Aŗ	piaceae + Alliu	ım		Brass	icas + Beta vı	ulgaris			Pulses	
2014	Carrot, carrot, carrot	Cellery/Fennel, Comi	Onion, Leek, Garlic	Rock	et, Spinach/Chard, Be	coli, Radish, cauliflo	bbage, Turnip, Kohlra	abi	fava, fava, fava	peas, peas, peas	cpea, chickpea, chicl
Summer		Seeds +				Solanum				Cucurbita	
2014	sunflower, 0, s. potato	com, com, okra	ans, beans, mulukhiy	ah	0, bell pepper, 0	tomato, 0, eggplant	potato, 0,, Basil	cumbe	r, cucumber, amenian	watermelon, 0, melor	squash, 0, zucchini
Winter	Brass	icas + Beta vu	ılgaris			Pulses			Ap	oiaceae + Alliα	ım
2015	et, Spinach/Chard, Be	coli, Radish, cauliflo	bbage, Turnip, Kohlra	abi	fava, fava, fava	peas, peas, peas	cpea, chickpea, chic	kpea	Carrot, carrot, carrot	Cellery/Fennel, Com	Onion, Leek, Garlic
Summer		Solanum				Cucurbita				Seeds +	
2015	0, bell pepper, 0	tomato, 0, eggplant	potato, 0,, Basil	ucumber	, cucumber, ameniar	watermelon, 0, melor	squash, 0, zucchini		sunflower, 0, s. potato	com, com, okra	ans, beans, mulukhiy
Winter		Pulses			A	oiaceae + Alliu	um		Brass	icas + Beta νι	ılgaris
2016	fava, fava, fava	peas, peas, peas	cpea, chickpea, chick	креа	Carrot, carrot, carrot	Cellery/Fennel, Corri	Onion, Leek, Garlic	Rock	et, Spinach/Chard, Be	coli, Radish, cauliflo	bbage, Tumip, Kohlra
Summer		Cucurbita				Seeds +				Solanum	
2016	cucumber, armenian	watermelon, 0, melon	squash, 0, zucchini	:	sunflower, 0, s. potato	com, com, okra	ans, beans, mulukhiy	ah	0, bell pepper, 0	tomato, 0, eggplant	potato, 0,, Basil
Winter	Ar	oiaceae + Alliu	ım		Brass	icas + Beta vı	ulgaris			Pulses	
2017	Cellery/Fennel, Corria	Onion, Leek, Garlic	Carrot, carrot, carrot	Вос	ccoli, Radish, cauliflo	bbage, Tumip, Kohlr	et, Spinach/Chard, Be	etroot	peas, peas, peas	kpea, chickpea, chic	fava, fava, fava
Summer		Seeds +				Solanum				Cucurbita	
2017	com, com, okra	ans, beans, mulukhiy	sunflower, 0, s. potato	•	tomato, 0, eggplant	potato, 0,, Basil	0, bell pepper, 0		watermelon, 0, melon	squash, 0, zucchini	cucumber, armenian
Winter	Brass	icas + Beta vu	ılgaris			Pulses			Ap	oiaceae + Alliα	ım
2018	coli, Radish, cauliflo	bbage, Tumip, Kohlr	et, Spinach/Chard, Be	etroot	peas, peas, peas	kpea, chickpea, chic	fava, fava, fava	arsley	Cellery/Fennel, Coma	Onion, Leek, Garlic	Carrot, carrot, carrot
Summer		Solanum				Cucurbita				Seeds +	
2018	tomato, 0, eggplant	potato, 0,, Basil	0, bell pepper, 0		watermelon, 0, melor	squash, 0, zucchini	cucumber, amenian	cucun	com, com, okra	ans, beans, mulukhiy	unflower, 0, s. potato
Winter		Pulses			A	oiaceae + Alliu	um		Brass	icas + Beta νι	ılgaris
2019	peas, peas, peas	kpea, chickpea, chic	fava, fava, fava	Parsley,	Cellery/Fennel, Comi	Onion, Leek, Garlic	Carrot, carrot, carrot	Во	ccoli, Radish, cauliflo	bbage, Tumip, Kohln	et, Spinach/Chard, Be
Summer		Cucurbita				Seeds +				Solanum	
2019	watermelon, 0, melon	squash, 0, zucchini	cucumber, armenian	cucumbe	com, com, okra	ans, beans, mulukhi	sunflower, 0, s. potato)	tomato, 0, eggplant	potato, 0,, Basil	0, bell pepper, 0
Winter	Ap	piaceae + Alliu	ım		Brass	icas + Beta vı	ılgaris			Pulses	

Onion, Leek, Garlic Carrot, ca

CEREALS, PULSES (WHEAT, FAVA) AND OLIVE OIL

VEGETABLES

INPUTS

	Vegetables	Olive eil	Pulses	Wheat	Honey	Carols	Misc	Total
Harvest (kg/year)	535.7	40	84	48	15	5		
Plot size (m2)	140	45	350	200	1	5		741
Irrigation (m3)	50	-	-	_	-	-		50
Labor (days/year)	4	2	2.5	1.5	1	0.5	1	12.5 days
Petrol (liters/year)	10		14	9				33
Compost (m3)	3	1	-	_				4

RESULTS

PELMAN ET AL (2024) 'A LIFE-CYCLE APPROACH HIGHLIGHTS THE NUTRITIONAL AND ENVIRONMENTAL SUPERIORITY OF AGROECOLOGY OVER CONVENTIONAL FARMING: A CASE STUDY OF A MEDITERRANEAN FARM' PLOS SUSTAINABILITY AND TRANSFORMATION 3(6)

Dr. Alik PelmanDepartment of Humanities and Arts, Technion

Prof. Gidon Eshel
Physics Department, Bard
College, Annandale-onHudson, NY

Prof. Jerke de Vries
Applied Research Centre, VHL
University of Applied Sciences,
Netherlands

Prof. Yohay Carmel
Faculty of Civil and
Environmental Engineering, The
Technion

Dr. Sigal TepperDepartment of nutritional studies, Tel Hai College

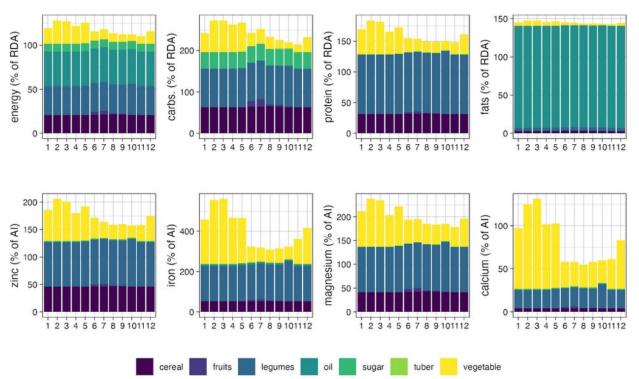
Dr. Alon Shepon
The Porter School of the
Environment and Earth
Sciences, Tel Aviv University

Goal of research: comparison

	Env. Impacts	Nutrition
BAU		
AGRO		

Goal of research: comparison

	Env. Impacts	Nutrition
	•	
BAU		
AGRO		
MIX		


Goal of research: comparison

	Per ur	nit mass	Per unit area		
	Env. Impacts	Nutrition	Env. Impacts	Nutrition	
BAU					
AGRO					
MIX					

RESULTS: FOOD SECURITY IN AGRO

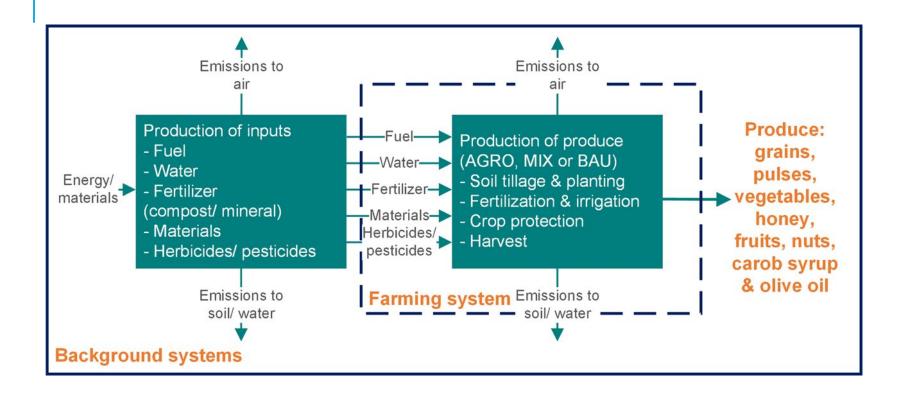
- RDA: meets or exceeds.
- Calcium: 60%-130%.
 The limiting factor
- Macronutrients
 distribution: 49% carbs,
 37% fats, 14% protein.

meets AMDR (55%-70%, 20%-35%, and 10%-35% of total calories respectively).

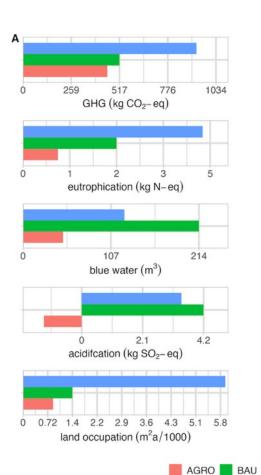
COMPARATIVE STUDY

AGROECOLOGY VS.

VS. CONVENTIONAL FARMING

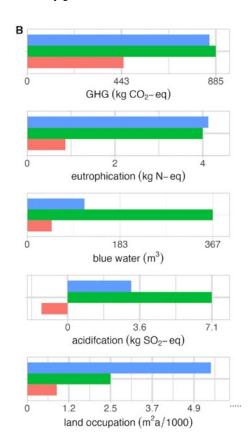


LCA — CRADLE TO FARM GATE



COMPARISON: ENVIRONMENTAL IMPACTS (LCA)

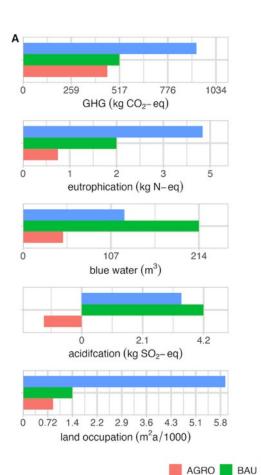
MIX


Per unit mass

AGRO's av. Impact: **37**% of BAU

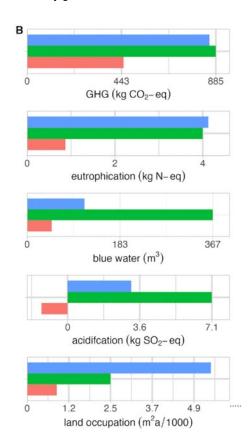
Per unit farmed area

AGRO's av. impact: **21**% of BAU



COMPARISON: ENVIRONMENTAL IMPACTS (LCA)

MIX


Per unit mass

AGRO's av. Impact: **37**% of BAU

Per unit farmed area

AGRO's av. impact: **21**% of BAU

FARMLAND VS. TOTAL LAND USE

Note: 'land use' includes *all* land used for crop production: farmland + land transformations and changes and land needs of producing fuel, materials, fertilizer and their related infrastructure and activities.

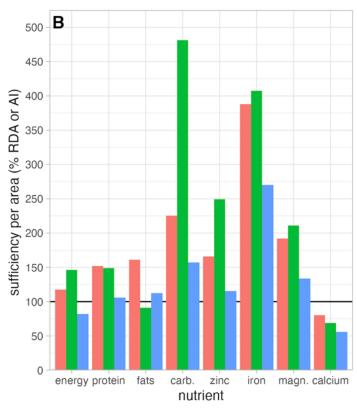
Hence, total land use for conventional farming is 290% that of agroecology, per the same farmland area.

COMPARISON: NUTRITIONAL OUTPUT

AGRO

BAU

MIX

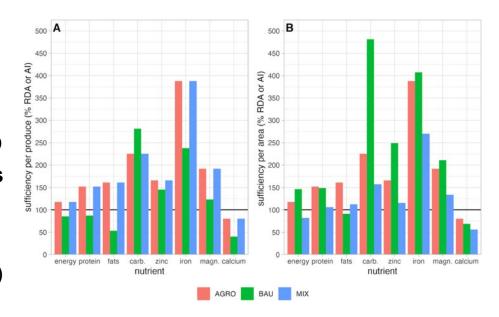

Per unit mass

AGRO's av. output: 166% of BAU

500 450 sufficiency per produce (% RDA or AI) 400 350 300 250 200 150 100 50 zinc energy protein fats carb. iron magn. calcium nutrient

Per unit farmed area

AGRO's av. output: 97% of BAU


NUTRITIONAL COMPARISON - ANALYSIS

<u>Per unit mass</u>: AGRO crops more (66%) **nutritionally dense.** Due to **crops mixture**.

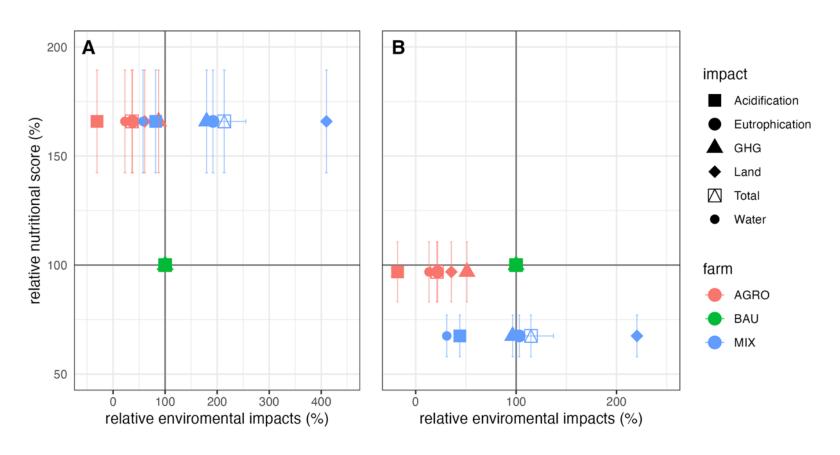
Per unit farmed area: Although AGRO more nutritionally dense, it produces a slightly lower (3%) nutritional yield (i.e., less nutrients per m²).

<u>Cause</u>: **total yield** (i.e., mass per area) of BAU is greater

However, the larger yields are achieved via larger inputs and greater environmental **negative impact**.

NUTRITIONAL COMPARISON - ANALYSIS

As mentioned, per unit farmed area, nutritional yield of AGRO is **97%** that of BAU.


But AGRO's yields are only about **50%** that of BAU.

How is it possible? <u>3 reasons</u>:

- 1. Intercropping
- Mixture of crops (with higher nutritional yield)
- 3. Zero onsite waste

COMPARISON: COMBINED NUTRITIONAL-ENVIRONMENTAL

Nutritional quality (y axis) is presented using a relative nutritional score compared to BAU.

COMPARISON: COMBINED NUTRITIONAL-ENVIRONMENTAL

	Per ur	nit mass	Per unit farmland		
	Env. Impacts	Nutrition	Env. Impacts	Nutrition	
BAU	100%	100%	100%	100%	
AGRO	37%	166%	21%	97%	
MIX	214%	166%	115%	68%	

COMPARISON: COMBINED NUTRITIONAL-ENVIRONMENTAL

	Per unit mass		Per unit farmland		Per land use	
	Env. Impacts	Nutrition	Env. Impacts	Nutrition	Env. Impacts	Nutrition
BAU	100%	100%	100%	100%	100%	100%
AGRO	37%	166%	21%	97%	21%	273%
MIX	214%	166%	115%	68%	115%	31%

OVERALL

Per same area:

Environmental impact

Agroecology: 21% of the negative impact of conventional farming

Nutrition

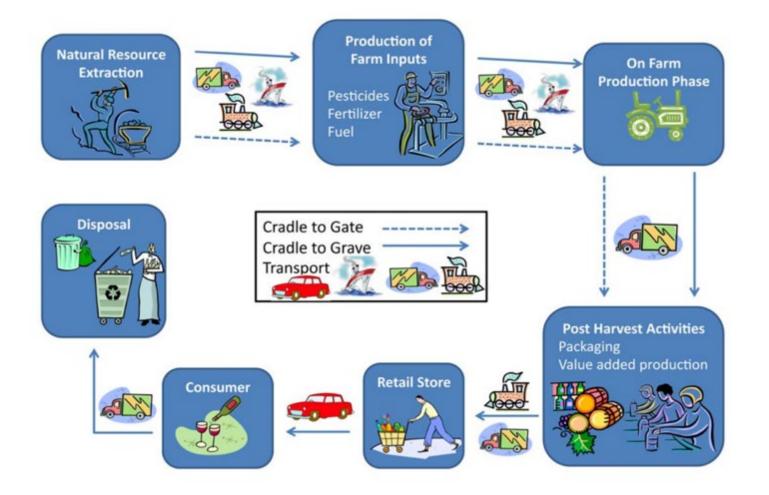
Agroecology: 97% of the nutritional yield of conventional farming

But!

If we count **all land used** by industrial farming (farmland + area for: fertilizer, machines, fuels, irrigation...) its nutritional yield drops 2.9 times. Hence,

Agroecology: 273% of the nutritional yield of conventional farming!

TOTAL LAND USE VS. FARMLAND

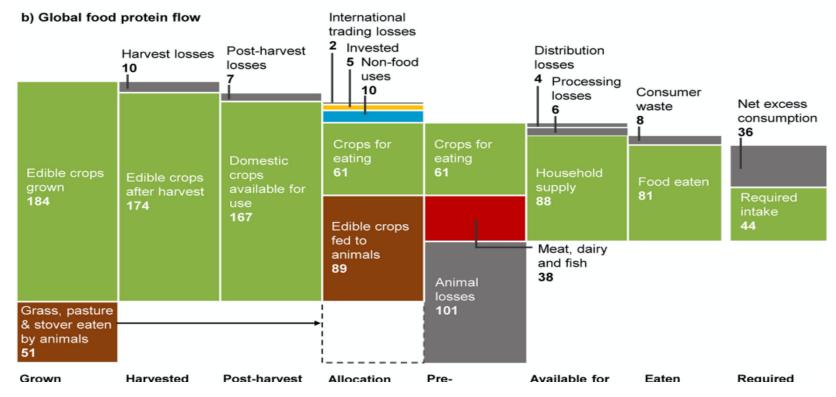


In other words, if we were to replace **all land** occupied by industrial farming (directly and indirectly), with agroecology,

we would be able to feed 2.7 times more people, with merely 21% of the environmental impact.

POST GATE: LCA

We haven't even mentioned **post-gate losses** and impacts, which would make the advantage of agroecology even greater



POST GATE: NUTRITION

Post-gate food waste in conventional farming: about 40%

This drastically reduces produce per area of conventional farming

Berners-Lee, M, et al. 2018. Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elem Sci Anth, 6: 52.

RECAP

1. Motivation:

Self-Sufficiency as Ethics

2. Execution:


House; Garden

3. Results:

Nutrition; Environment

4. Conclusion

THANK YOU!

Stay in touch: alikpelman@technion.ac.il

DISCUSSION: UPSCALING

1. copy and paste

2. inflate

DISCUSSION: UPSCALING

What elements of agroecology can be preserved on a large scale?

- 1. No chemicals
- 2. No-dig
- 3. Seasonal
- 4. Local varieties
- 5. Crop-rotation
- 6. Minimum irrigation (80% of plot rainfall)
- 7. Small-scale tools
- Zero waste
- 9. Crops with high nutritional yield (80% of plot: cereals, pulses, oil)
- 10. Spatial overlap (grain/olive oil)

DISCUSSION: UPSCALING

Finance: is agroecology financially viable?

Need to be checked.

However,

Average monthly income in Israel: NIS 11,000

Average monthly expenses on food: NIS 1000

Hence, 0.1 of employment time is spent on food, i.e., 2.2 days/month

Agroecological farm: 1 day/month + expenses.

Conclusion: AGRO's produce is not more expensive.

DISCUSSION: TOTAL LAND USE

Example: Wheat land occupation

	m2a	%
Total	3,83	100%
Crop	3,001	78%
Construction (industrial, dump, traffic)	0,016	0,4%
Natural (forest, grass etc)	0,686	18%
Water (water bodies, rivers, seabed etc)	0,122	3,2%
Mineral extraction	0,001	0,0%